

Taking the Step from VBA Macros to

Autodesk
®
 Inventor

®
 Add-Ins

Brian Ekins – Autodesk

 CP218-1 This session will introduce you to the world of Inventor add-ins. It begins with a look at

Microsoft
®
 Visual Basic

®
 Express, a free programming interface that can be used to write add-ins. We'll also

look at the differences between VBA and VB.Net. Next we'll discuss what an add-in is and its advantages and

disadvantages compared to using VBA. Finally, we'll look at the process of converting a VBA macro into an

add-in command.

About the Speaker:
Brian is a designer for the Autodesk Inventor programming interface. He began working in the CAD industry
over 25 years ago in various positions, including CAD administrator, applications engineer, CAD API
designer, and consultant. Brian was the original designer of the Inventor® API and has presented at
conferences and taught classes throughout the world to thousands of users and programmers.

brian.ekins@autodesk.com

Taking the Step from VBA Macros to Autodesk
®
 Inventor

®
 Add-Ins

2

Taking the Step from VBA Macros to Autodesk
®
 Inventor

®
 Add-Ins

3

If you’ve done any programming with Inventor you’ve likely heard about Add-Ins. This paper is written for

those users of Inventor that have some experience writing VBA macros and would like to have a better

understanding of what an Add-In is and what’s involved to create one. The following questions are

addressed:

1. What is an Add-In?

2. Why would you want to create an Add-In?

3. How do you create an Add-In?

4. How do you convert your VBA macros?

5. How do you execute an Add-In command?

6. How do you debug an Add-In?

7. How do you deploy an Add-In?

What is an Add-In?

Technically an Add-In is a COM component. What this means is that it’s a programming component that

can be used by other programs. It exposes a programming interface to allow other programs to talk to it.

In the case of an Inventor Add-In the other program that will talk to it is Inventor.

When an Add-In is installed it adds information into the registry identifying it as a COM component and

also as an Inventor Add-In. When Inventor starts up, it looks in the registry to find the Add-Ins and then

starts and interacts with each one. The interaction between Inventor and the Add-In at this point is

minimal but consists of Inventor starting the Add-In and passing it the Inventor Application object.

Through the Application object the Add-In has access to the full Inventor API and can perform whatever

tasks the API allows.

During this startup process the Add-In typically hooks up to various Inventor events and then while

Inventor is running, it just waits for an event to occur. For example, during startup it might create a button

and connect to the button’s OnExecute event. When the button is pressed by the end-user the

OnExecute event is fired to the Add-In and then it can perform whatever action is associated with that

button.

Why create an Add-In?

To better understand if an Add-In is appropriate for you let’s look at some of the advantages and

disadvantages when compared to VBA.

Advantages of an Add-In

1. Loads at Inventor’s Startup

This is one of the biggest advantages of an Add-In. It allows the Add-In to be running at the beginning

of an Inventor session where it can connect to events to allow it to react to any action that occurs in

Inventor. For example, a PDM system might want to know whenever a document is saved.

Because an Add-In is loaded at start-up, it allows you to create functionality that is very tightly

integrated with Inventor. From an end-user’s perspective there’s no difference between a native

Inventor command and a well written Add-In command.

2. Alternative to Document Automatic VBA Macros

Inventor supports the ability to create a VBA macro that’s automatically run at certain times. There are

code management and resource problems with using this functionality. For most cases where

document auto macros are being used an Add-In is a better choice. (See the post titled Converting

VBA Auto Macros to an Add-In at http://blogs.autodesk.com/modthemachine for more information.)

http://blogs.autodesk.com/modthemachine

Taking the Step from VBA Macros to Autodesk
®
 Inventor

®
 Add-Ins

4

3. Can Use New Languages

An Add-In can be created using any language that supports the creation of a COM component. This

gives you the choice of choosing something more familiar than VBA if you have experience in other

languages. This also gives you the opportunity to use the latest generation of programming tools.

VBA and VB 6 are older technology and are being replaced by the newer .Net technologies. In a

transition like this there are always pros and cons but I believe in this case the pros outweigh the cons

because there are a lot of productivity enhancements in the .Net languages. For this paper I’ll use

Visual Basic 2008 Express Edition and the Visual Basic that’s part of Visual Studio as the

programming language.

4. Better User-Interface

An Add-In can provide a much richer user-interface than what you can do with VBA. For example, the

languages you use to create an Add-In have much better dialog creation tools. An Add-In can also

control where its commands exist within Inventor’s toolbars and can even create its own environments.

5. Deployment

To provide the functionality of an Add-In to someone else, you just supply the installer and have them

install it. The Add-In’s buttons will automatically be available in the next session of Inventor.

If you want to share a VBA macro you need to provide the source code to allow the user to insert it

into their VBA project. If they want a button to run the macro they need to manually create it.

6. Easier to Manage the Source Code and Executable

Source code of Add-Ins is easier to manage than VBA programs. VB.Net source code is saved as

ASCII files which allows them to be easily searched. They can also be managed by source control

systems. VBA programs are stored within .ivb files which are binary and need to be opened by

Inventor to be read.

Because the result of creating an Add-In is a dll you can version your programs. It’s an easy matter

for an end-user to check the version of the dll and know if they have the latest version of your Add-In.

There isn’t any versioning for VBA macros.

7. Code Security

To share VBA macros you need to share your source code. It is possible to share an .ivb file and

password protect the contents but this protection is not very secure. With an Add-In you’re delivering

a dll, not any source code.

8. Better support for transactions and transcripting

A more advanced topic is transcripting. A transcript is a recording of the actions the end-user has

performed. The transcript can be replayed to mimic those same actions. Transcripting is used by

Inventor QA as an internal testing tool but is also available to others to use. The architecture to

support transcripting also provides a richer set of functionality for transaction handling. Writing

programs to support transcripting is reasonably complex and is most appropriate for large, complex

applications. The transaction functionality supported by the TransactionManager object is sufficient for

most applications and is much easier to implement.

Advantages of VBA

1. Easier to write

Most macro type programs are easier to write using VBA than VB.Net. VBA is simpler and was

specifically designed for programming the type of programming interface that Inventor has.

Taking the Step from VBA Macros to Autodesk
®
 Inventor

®
 Add-Ins

5

2. Better for rapid prototyping

For quickly testing or verifying the ability of the API to perform some function in Inventor, VBA is easier

and faster. It’s easy to write code, test it, make changes, and test it again.

I’ll frequently write small prototypes of an application using VBA and then convert it to VB.Net once

I’ve been able to determine that what I want to do is feasible.

3. Better Object Browser

The Object Browser in VBA provides a much cleaner and easier to understand view of the Inventor

objects. I often use the VBA Object Browser even when I’m programming in VB.Net.

4. Debugger is better at looking at Inventor objects

The VBA debugger provides better information when looking at Inventor objects. This is also a reason

why VBA is better for rapid prototyping.

Should you abandon VBA and switch to writing Add-Ins? Possibly not. An Add-In is not the ideal solution

to everything and each case needs to be looked at individually. If VBA is working for you now there’s

probably no compelling reason to make a big switch. If you tend to write smaller, simple utilities that only

you or a small group use, VBA is still likely the best solution. If you’ve had issues with VBA because of its

limitations, Add-Ins may be the solution you need.

How do you create an Add-In?
Before looking at the mechanics of creating an Add-In, here’s what you need to create an Add-In.

What you’ll Need

A Programming Language - To write an add-in you need to use a language that supports creating COM

components. For this paper I'll discuss using either Visual Basic 2008 Express Edition or the Visual Basic

that is part of Visual Studio 2008. Visual Basic 2008 Express Edition is particularly interesting because it

is a free version of Visual Basic and can be downloaded from Microsoft’s website. It’s a great way for a

new programmer to get started without making a financial investment. Microsoft also provides a lot of

training material that is free with much of it targeted at the new programmer. If you’re new to

programming or the .Net languages it would be good to work through some of the Microsoft programming

tutorials to familiarize yourself with the language and development environment.

The express edition is free but when you get something for free you expect some limitations. For Add-In

development, the Express edition gives you everything you’re likely to need with the exception of two

things, which I’ll show you how to work around later. You can always upgrade in the future to Visual

Studio Standard Edition for $299 if you decide you need more functionality. Search Microsoft’s site for

the “Visual Studio 2008 Product Comparison Guide” for a complete comparison of the different versions.

Inventor SDK Developer Tools – You’ll also need some Inventor specific development tools. These are

delivered as part of a standard Inventor installation but you need to perform a couple of additional steps

to make them available. Here are the steps, which are different depending on whether you’re using

Inventor 2009 or Inventor 2010.

Inventor 2010

1. You need to run the SDK installer to make the SDK files available. The location of the installer is

different for Windows XP and Windows Vista or Windows 7.

Windows XP: C:\Program Files\Autodesk\Inventor 2010\SDK\DeveloperTools.msi

Windows Vista or 7: C:\Users\Public\Documents\Autodesk\Inventor 2010\SDK\DeveloperTools.msi

Taking the Step from VBA Macros to Autodesk
®
 Inventor

®
 Add-Ins

6

2. Next you need to install the Add-In wizard, which you do by running the InventorWizards.msi
installer located in the DeveloperTools\Tools\Wizards directory that was created when you
installed the developer tools.

Inventor 2009

If you’re still using Inventor 2009 you’ll need to manually install the template files. At the time Inventor

2009 was released Visual Studio 2005 was the current release, so installing the wizard as instructed

above does not install it for Visual Basic Express Edition 2008 or Visual Studio 2008. You can easily

work around this issue using the steps below.

1. Get the template file, VBInventorAddInTemplate.zip. You can get this file from the packaged set

of files that go with this AU session or you can get it from my blog in the post titled “Converting VBA

Auto Macros to an Add-In”. (http://blogs.autodesk.com/modthemachine)

2. Copy the VBInventorAddInTemplate.zip file to the following location, (don't unzip it but just copy

the zip file as-is): My Documents\Visual Studio 2008\Templates\ProjectTemplates

Creating an Add-In

You create an Add-In by starting VB 2008 Express or Visual Studio (both of

which I’ll just refer to as VB.Net for the rest of this paper, unless there’s a

difference between the two). Within VB.Net create a new project using the

New Project command in the File menu. The New Project dialog displays

the templates that are available to create various types of projects. Select

the “Autodesk Inventor AddIn” template as shown to the right. If you don’t

see the icon for the Inventor Add-In template, make sure the top-level “Visual

Basic” node is selected in the Project Type tree on the left of the dialog.

Specify a name that makes sense for your project, (I’m using “AUAddIn” for

this example), and click OK.

Congratulations, you’ve just created an Add-In. Click the Build AUAddIn

command (or the name or your Add-In) in the Build menu. Once it’s

finished building, start Inventor and look in the Add-In Manager where you

should see your Add-In in the list. It’s not very exciting at this point

because the Add-In doesn’t do anything, but the foundation is now in

place to build on.

Let’s look at what has been created for you. In the Solution Explorer you’ll see that two files were created

for the project; AssemblyInfo.vb and StandardAddInServer.vb. AssemblyInfo.vb contains information

about the project and you won’t need to do anything with this file. The interesting file is

StandardAddInServer.vb.

http://blogs.autodesk.com/modthemachine

Taking the Step from VBA Macros to Autodesk
®
 Inventor

®
 Add-Ins

7

If we look at the code for StandardAddInServer.vb you’ll see what’s shown below.

At first glance it looks like there’s not very much code, but most of it is hidden within two collapsed

regions: “ApplicationAddInServer Members” and “COM Registration”. Before we look at the code in those

regions let’s look at the code that is visible.

First, it imports three libraries, one of them being the Inventor library. (A reference to this library was also

added to the project.)

Next it defines the class “StandardAddInServer” and specifies the Add-In’s Class ID. The Class ID is the

big number in the GuidAttribute line; “588d597a-de0f-446e-b163-2b77e263cf4a” in my example. This is

the unique identifier for your Add-In. You’ll see later how it is used when creating things that are

associated with your Add-In.

The other important item is the declaration of the variable m_inventorApplication. It’s only when you

program with Inventor’s VBA that you have access to the ThisApplication property. An Add-In doesn’t

have the ThisApplication property and needs to get access to the Application object in some other way.

The m_inventorApplication variable is used to save a reference to the Inventor Application object.

Taking the Step from VBA Macros to Autodesk
®
 Inventor

®
 Add-Ins

8

Within the “COM Registration” region is the code that does the registration to identify this as an Inventor

Add-In. Most of the code in this region should be left as-is but there are a couple of things you may want

to change. The first instance of clsid.SetValue(Nothing, "AUAddIin") defines the name of your

Add-In as it’s shown in the Add-In Manager. You can change the “AUAddIin” portion to anything you

want. The second instance of the statement clsid.SetValue(Nothing, "AUAddIin") is the description

of your Add-In. The description is displayed at the bottom of the Add-In Manager. Both of these are

highlighted in the code below.

The other section of SetValue methods that are highlighted below define which version of Inventor your

Add-In will be loaded for. Notice that all but one of these lines is commented out. The commented lines

illustrate the various options that are available. In this example, the Add-In will load for all versions of

Inventor later than version 13 (Inventor 2009), so it will load for Inventor 2010 and beyond. If you’re

writing your Add-in to work with Inventor 2009 you should change the value to “12..”. That finishes the

registration code.

<ComRegisterFunctionAttribute()> _

Public Shared Sub Register(ByVal t As Type)

 Dim clssRoot As RegistryKey = Registry.ClassesRoot

 Dim clsid As RegistryKey = Nothing

 Dim subKey As RegistryKey = Nothing

 Try

 clsid = clssRoot.CreateSubKey("CLSID\" + AddInGuid(t))

 clsid.SetValue(Nothing, "AUAddIin")

 subKey = clsid.CreateSubKey("Implemented Categories\{39AD2B5C-7A29-

 subKey.Close()

 subKey = clsid.CreateSubKey("Settings")

 subKey.SetValue("AddInType", "Standard")

 subKey.SetValue("LoadOnStartUp", "1")

 'subKey.SetValue("SupportedSoftwareVersionLessThan", "")

 subKey.SetValue("SupportedSoftwareVersionGreaterThan", "13..")

 'subKey.SetValue("SupportedSoftwareVersionEqualTo", "")

 'subKey.SetValue("SupportedSoftwareVersionNotEqualTo", "")

 'subKey.SetValue("Hidden", "0")

 'subKey.SetValue("UserUnloadable", "1")

 subKey.SetValue("Version", 0)

 subKey.Close()

 subKey = clsid.CreateSubKey("Description")

 subKey.SetValue(Nothing, "AUAddIin")

 Catch ex As Exception

 System.Diagnostics.Trace.Assert(False)

 Finally

 If Not subKey Is Nothing Then subKey.Close()

 If Not clsid Is Nothing Then clsid.Close()

 If Not clssRoot Is Nothing Then clssRoot.Close()

 End Try

End Sub

Taking the Step from VBA Macros to Autodesk
®
 Inventor

®
 Add-Ins

9

The “ApplicationAddInServer Members” region is where you find the heart of the Add-In. This section of
code is shown below. (I’ve removed most of the comments and simplified the code to save space.)

Public Sub Activate(ByVal addInSiteObject As ApplicationAddInSite, _

 ByVal firstTime As Boolean)

 ' Initialize AddIn members.

 m_inventorApplication = addInSiteObject.Application

End Sub

--

Public Sub Deactivate()

 ' Release objects.

 Marshal.ReleaseComObject(m_inventorApplication)

 m_inventorApplication = Nothing

 System.GC.WaitForPendingFinalizers()

 System.GC.Collect()

End Sub

--

Public ReadOnly Property Automation()

 Get

 Return Nothing

 End Get

End Property

--

Public Sub ExecuteCommand(ByVal commandID As Integer)

End Sub

The four methods shown above (Activate, Deactivate, Automation, and ExecuteCommand) are required

to be supported by all Add-Ins. The ExecuteCommand method is now obsolete so you’ll never use it.

The Automation method is rarely used and is not discussed here. You will need to use the Activate and

Deactivate methods.

The Activate method is called by Inventor when it starts the Add-In. This method has two arguments.

The first argument passes in an ApplicationAddInSite object. The ApplicationAddInSite object is a very

simple object that just supports the Application property. The Add-In uses to get the Inventor Application

object and assigns it to the m_inventorApplication member variable so it’s available to the rest of the

Add-In. The second argument indicates if this is the first time the Add-In has ever been run. This is used

when creating the user-interface for your Add-In, as we’ll see later.

The Deactivate method is called by Inventor when the Add-In is being shut down. This gives the Add-In a

chance to clean up and release the references it has to Inventor objects. An Add-In is shut down when

Inventor is shut down or when the end-user unloads it through the Add-In Manager. We’ll look at what

you need to do in the Deactivate method later.

How do you convert your VBA Macros?

When converting VBA code into an Add-In there are two things to consider. First, where does your VBA

code go within the Add-In and second, what has to be changed to make the code work with VB.Net.

Even though VBA and VB.Net are both variations of Visual Basic there are significant differences that

you’ll need to be aware of.

Taking the Step from VBA Macros to Autodesk
®
 Inventor

®
 Add-Ins

10

Converting VBA Code

Converting VBA code to VB.Net is a copy and paste process. You set up the basic architecture of your

program in VB.Net, create any needed dialogs, and then begin copying and pasting code from your VBA

project into the VB.Net project. There are differences between VBA and VB.Net so some code will

require editing to be valid in VB.Net. Some of these differences are easy to see and are pointed out as

errors by VB.Net; others are not so easily found and show up either as run-time errors or incorrect results.

It’s best to copy and paste one function at a time so you can check the code and try to catch any of these

potential problems. The issues I think you’re most likely to encounter are listed below.

1. The global variable ThisApplication isn’t available in VB.Net. It was shown earlier how an Add-In

is able to get the Application object through the Activate method. You’ll need to somehow make this

available to the code you copied from VBA. There are two basic approaches; use a global variable or

pass it in as an argument. Which approach you choose, is up to you.

For this paper I’ve chosen to pass the Application object as an argument. I think this makes the code

clearer and requires less editing of the VBA code. Below is an example of a VBA function before and

after modifying it to handle this input argument. Notice that I used “ThisApplication” as the name of

the argument so I don’t need to edit the name of the variable within the function.

' Before

Public Sub Sample()

 MsgBox "There are " & ThisApplication.Documents.Count & " open."

End Sub

' After

Public Sub Sample(ThisApplication As Inventor.Application)

 MsgBox("There are " & ThisApplication.Documents.Count & " open.")

End Sub

2. VB.Net requires fully qualified enumeration constants. This means the statement below, which is

valid in VBA, does not work in VB.Net.

oExtrude.Operation = kJoinOperation

In VB.Net you must fully qualify the use of kJoinOperation by specifying the enumeration name as

shown below.

oExtrude.Operation = PartFeatureOperationEnum.kJoinOperation

These are easy to catch and fix since VB.Net identifies them as errors and IntelliSense does most of

the work for you by creating the fully qualified name.

3. Method arguments default to ByVal. In VBA, arguments default to ByRef. Here’s an example to

illustrate what this means. The VBA Sub below takes a feature as input and returns some information

about the feature.

Sub GetFeatureInfo(Feature As PartFeature, Suppressed As Boolean, _

 DimensionCount As Long)

In VBA this code works fine since it’s optional to specify whether an argument is ByRef or ByVal and

if you don’t specify one it defaults to ByRef. A ByRef argument can be modified within the Sub and

the modified value will be passed back to the calling routine. A ByVal argument can also be modified,

but the value is local and is not passed back to the calling routine.

Taking the Step from VBA Macros to Autodesk
®
 Inventor

®
 Add-Ins

11

In this example the Suppressed and DimensionCount arguments need to be ByRef since they’re used

to return information to the caller. The Feature argument can be declared as ByVal since it’s not

expected to change. VB.Net requires you to declare each variable as ByRef or ByVal. If it isn’t

specified for an argument, VB.Net automatically sets it to ByVal when you paste in your VBA code.

Because of that, this example won’t run correctly because the Suppressed and DimensionCount

arguments won’t return the correct values. They need to be changed to ByRef arguments for the sub

to function as expected.

4. Arrays have a lower bound of 0 (zero). I think this is the change that will result in the most work

and errors when porting code from VBA to VB.Net. In VBA the default lower bound of an array is 0

but it’s common to use the Option Base statement to change this to 1. It’s also common in VBA to

specify the lower and upper bounds in the array declaration as shown below.

Dim adCoords(1 To 9) As Double

In VB.Net the above statement is not valid. The lower bound of an array is always 0. The equivalent

statement in VB.Net is:

Dim adCoords(8) As Double

This creates an array that has an upper bound of 8. Since the lower bound is zero the array can

contain 9 values. This can be confusing for anyone familiar with other languages where the

declaration is the size of the array rather than the upper bound. If your VBA program was written

assuming a lower bound of 1, adjusting the lower bound to 0 shifts all of the values in the array down

by one index. You’ll need to change the index values everywhere the array is used to account for

this.

5. Arrays of variable size are handled differently in VB.Net. Here are a couple of issues that you

might run into. First, you can’t specify the type when you re-dimension an array. Specifying a type

will result in an error in VB.Net

' VBA

ReDim adCoords(18) As Double

' VB.Net

Redim adCoords(18)

Second, is that declaring an array in VB.Net does not initialize it. The VBA code below will fail in .Net

with a type mismatch error. This is easily fixed by initializing the value to an empty array, as shown

(open and closed braces).

' VBA

Dim adStartPoint() As Double

Dim adEndPoint() As Double

Call oEdge.Evaluator.GetEndPoints(adStartPoint, adEndPoint)

' VB.Net

Dim adStartPoint() As Double = {}

Dim adEndPoint() As Double = {}

oEdge.Evaluator.GetEndPoints(adStartPoint, adEndPoint)

Taking the Step from VBA Macros to Autodesk
®
 Inventor

®
 Add-Ins

12

6. Some data types are different. There are two changes here that can cause problems. First, the

VBA type Long is equivalent to the VB.Net Integer type. If you’re calling a method that was

expecting a Long or an array of Longs in VBA, that same code will give you a type mismatch error in

VB.Net. Change the declaration from Long to Integer and it should fix it.

Second, the Variant data type isn’t supported in VB.Net. If you have programs that use the Variant

type, just change those declarations to the new Object type instead.

7. Variable scope. The scope of variables within functions is different with VB.Net. Variable scope is

now limited to be within code blocks where-as VBA was only limited to within a function. If you copy

the VBA function below, (which works fine in VBA), into a VB.Net program it will fail to compile. The

last two uses, (underlined in the sample below), of the variable strSuppressed report that the variable

is not declared. In this example strSuppressed is declared within the If Else block and is only

available within that block.

' VBA

Public Sub ShowState(ByVal Feature As PartFeature)

 If Feature.Suppressed Then

 Dim strSuppressed As String

 strSuppressed = "Suppressed"

 Else

 strSuppressed = "Not Suppressed"

 End If

 MsgBox "The feature is " & strSuppressed

End Sub

Here’s a version of the same function modified to work correctly in VB.Net. The declaration of the

strSuppressed variable has been moved outside the If Else block, and has scope within the entire

sub.

' VB.Net

Public Sub ShowState(ByVal Feature As PartFeature)

 Dim strSuppressed As String

 If Feature.Suppressed Then

 strSuppressed = "Suppressed"

 Else

 strSuppressed = "Not Suppressed"

 End If

 MsgBox "The feature is " & strSuppressed

End Sub

8. Events. The concepts and basic mechanics of how to use events is the same in VB.Net but there

are some enhancements to events in VB.Net. The change that will impact the conversion of your

VBA code to VB.Net is a change in the signature of the event handler Sub. Here’s an example of a

VBA event handler is shown below.

' VBA

Private Sub oBrowser_OnActivate()

 ' Handling Code

End Sub

Taking the Step from VBA Macros to Autodesk
®
 Inventor

®
 Add-Ins

13

The handler for the same event in VB.Net is shown below. Notice the “Handles” keyword which is

now used to specify that the Sub handles a specific event. In VBA the name of the Sub designated

that it was an event handler. In VB.Net the name of the sub isn’t important.

' VB.Net

Private Sub oBrowserPane_OnActivate() Handles oBrowserPane.OnActivate

 ' Handling Code

End Sub

Because of this, rather than copy and paste the entire event handler sub from VBA it’s best to create

a new empty sub in VB.Net and then copy and paste the contents of the sub from VBA.

9. Other. There are a couple of other changes you don’t need to do anything about but that you should

be aware of. The Set keyword is no longer supported. It’s automatically removed from any lines

when you paste it into VB.Net. This simplifies writing programs because in VBA it wasn’t always clear

when you needed to use Set and when you didn’t.

Parentheses are now required around property and method arguments. This was also a bit confusing

in VBA because of their inconsistent use. When you copy and paste code into VB.Net it will

automatically add any required parentheses. The Call statement is still supported but no longer

needed.

Cool stuff in VB.Net

As we see from the above discussion, there are differences between VBA and VB.Net which cause some

issues when porting code between them, however the fact that VB.Net is different is also good because it

provides a lot of new capabilities that we didn’t have in VBA. Here’s a short list of some of my favorites.

You can look them up in the VB.Net documentation for a complete description.

1. You can set the value of a variable when you declare it.

Dim partDoc As PartDocument = invApp.ActiveDocument

2. Error handling is much better in VB.Net. The old “On Error” type of error handling is still supported

but you can now use the much more powerful Try Catch style of error handling.

3. All of the registration information is part of the dll you create. No more .reg files are needed like they

were when an Add-In was created using VB oreinvl6.

4. Debugging an Add-In is easier than it was in VB 6.

5. The .Net libraries provide a much richer set of functionality for math functions, string handling, file

handling, working with XML files, and most everything else. You’re now using the same libraries as

anyone else that’s coding with any of the .Net languages.

6. Incrementing a variable. There’s now some simpler syntax for incrementing the value of a variable.

' VB 6

i = i + 1

' VB.Net

i += 1

Taking the Step from VBA Macros to Autodesk
®
 Inventor

®
 Add-Ins

14

Where to put your Code

I said earlier that to move code from VBA to VB.net you’ll need to copy and paste it. The question now is

where do you paste it? There isn’t a single answer to this and there are a lot of right answers. Rather

than discuss the various options I’ll just choose one method that is

easy and is somewhat similar to how code was organized in VBA.

Create a new code module in your VB.Net project using the Add

Module command in the Project menu. In this example I named the

module “Macros”. Here’s the code window after creating the module.

Notice that the Imports line for the Inventor library has been added.

The VBA macros will be copied into this module. Below is an example of this module after a simple VBA

macro has been copied in. Notice that I’ve added an argument to the macro to allow the Application

object to be passed in.

Module Macros

 Public Sub FeatureCount(ThisApplication As Inventor.Application)

 Dim oPartDoc As PartDocument

 oPartDoc = ThisApplication.ActiveDocument

 MsgBox("There are " & oPartDoc.ComponentDefinition.Features.Count & _

 " features in this part.")

 End Sub

End Module

Converting VBA Dialogs

There isn’t any support for converting VBA dialogs to VB.Net. You’ll need to recreate them from scratch

in VB.Net. However, this doesn’t mean you can’t reuse the code behind the dialog. For example, the

code you wrote to react to a button click can be reused, but the physical button on the dialog will have to

be recreated. Recreating your dialogs isn’t necessarily a bad thing since VB.Net has better dialog tools

and supports a much richer set of controls than were available in VBA.

You create a dialog as a Visual Basic form and typically display it in response to the user pressing a

button. The code below illustrates responding to a button’s OnExecute event by displaying a dialog. This

example uses the Show method to display the form in a modeless state. You can also use the

ShowDialog method which will display it as a modal dialog.

 Private Sub m_featureCountButtonDef_OnExecute(...)
 ' Display the dialog.

 Dim myForm As New InsertBoltForm

 myForm.Show(New WindowWrapper(m_inventorApplication.MainFrameHWND))

End Sub

One issue with displaying a dialog is that by default it is independent of the Inventor main window. This

can cause a few problems; the Inventor window can cover the dialog, when the end-user minimizes the

Inventor window your dialog is still displayed, and key presses that represent keyboard shortcuts are

stolen by Inventor. To get around these problems you can make the dialog a child of the Inventor

window. The sample above does this by using the WindowWrapper utility class, shown below. Just copy

the code below into your project and then you can use the WindowWrapper function as it’s used above.

Taking the Step from VBA Macros to Autodesk
®
 Inventor

®
 Add-Ins

15

#Region "hWnd Wrapper Class"

' This class is used to wrap a Win32 hWnd as a .Net IWind32Window class.

' This is used for parenting a dialog to the Inventor window.

'

' For example:

' myForm.Show(New WindowWrapper(m_inventorApplication.MainFrameHWND))

'

Public Class WindowWrapper

 Implements System.Windows.Forms.IWin32Window

 Public Sub New(ByVal handle As IntPtr)

 _hwnd = handle

 End Sub

 Public ReadOnly Property Handle() As IntPtr _

 Implements System.Windows.Forms.IWin32Window.Handle

 Get

 Return _hwnd

 End Get

 End Property

 Private _hwnd As IntPtr

End Class

#End Region

How do you execute your Add-In macro?

VBA is designed for simple creation and execution of macros. You can select and run macros from the

Macros command or you can create a button for a macro using the Customize command. An Add-In

doesn’t provide such an easy interface but does provide additional options and flexibility that you don’t

have with VBA. With the introduction of the ribbon interface in Inventor 2010 it becomes even more

flexible but also more complex because of the additional options. For now, I’ll keep it simple by looking at

the minimum work needed to create a button that will execute the sub in your Add-In. The code below is

for Inventor’s classic user-interface. Because Inventor automatically converts any classic interface into

the new ribbon interface this allows your Add-In to work in both interfaces. There is another paper that

describes the details of the ribbon interface.

The first step is to create a ButtonDefinition object to represent your command. The ButtonDefinition

object defines what your button will look like, (name, tool tip, description, icon, enabled state, etc.) and it

supports the OnExecute event. The OnExecute event is fired whenever the end-user clicks the button.

You create your ButtonDefinition objects in the Activate method of the Add-In, as shown below.

The ButtonDefinition object defines how a button looks and behaves but it’s not the physical button that

the end-user clicks. The clickable button is a CommandBarControl object. The CommandBarControl

defines a position within the user-interface and is associated with a ButtonDefinition object that defines

what the button looks like. You create your ButtonDefinition objects every time the Add-In is started.

However, you only create the CommandBarControl objects the very first time the Add-In is run (when the

firstTime argument is True). They’re only created the first time because Inventor remembers their

existence and position after that.

Below is some sample code that demonstrates all of this. I’ve also added a declaration and some code to

get the client ID of the add-in and save it in a variable. This variable is used wherever a client ID is used.

This helps to eliminate problems with different client ID’s being using.

Taking the Step from VBA Macros to Autodesk
®
 Inventor

®
 Add-Ins

16

' Declare member variables.

Private m_inventorApplication As Inventor.Application

Private m_ClientID As String

Private WithEvents m_featureCountButtonDef As ButtonDefinition

Public Sub Activate(ByVal addInSiteObject As Inventor.ApplicationAddInSite, _

 ByVal firstTime As Boolean)

 ' Initialize AddIn members.

 m_inventorApplication = addInSiteObject.Application

 ' Get the ClassID for this add-in and save it in a

 ' member variable to use wherever a ClientID is needed.

 m_ClientID = AddInGuid(GetType(StandardAddInServer))

 ' Create the button definition.

 Dim controlDefs As ControlDefinitions

 controlDefs = m_inventorApplication.CommandManager.ControlDefinitions

 m_featureCountButtonDef = controlDefs.AddButtonDefinition(_

 "Count Features", _

 "AUAddInCountFeatures", _

 CommandTypesEnum.kQueryOnlyCmdType, _

 m_ClientID, _

 "Count the features in the active part.", _

 "Count Features")

 If firstTime Then

 ' Create a new command bar (toolbar) and make it visible.

 Dim commandBars As CommandBars

 commandBars = m_inventorApplication.UserInterfaceManager.CommandBars

 Dim commandBar as CommandBar

 commandBar = commandBars.Add("My Macros", "AUAddInMyMacros",,m_ClientID)

 commandBar.Visible = True

 ' Add the control to the command bar.

 commandBar.Controls.AddButton(m_featureCountButtonDef)

 End If

End Sub

Here’s a brief discussion of the arguments for the AddButtonDefinition as used above.

1. The first argument is the display name. This is used for the text on the button.

2. The second argument is the internal name. This is a unique identifier you define for this particular

control definition. It must be unique with respect to all other control definitions in Inventor.

3. The third argument categorizes this command. The two most common categories are

kQueryOnlyCmdType and kShapeEditCmdType. The first is for a command that just performs

queries and the second is for a command that modifies geometry. There are others that are

described in Inventor’s programming help.

4. The fourth argument is the client ID of your Add-In. Note that it’s enclosed within braces and reuses

the class ID or your Add-In.

5. The fifth argument is the description. This appears within Inventor’s status field.

6. The sixth argument is the tool tip.

7. There are some additional optional arguments that are not defined in this example that allow you to

define an icon. Without specifying icons, the name of the command is displayed on the button. We’ll

look at icons later.

If you shut down Inventor, build your Add-In, and then restart Inventor you won’t see any difference

because this isn’t the first time your Add-In has been run so the tool bar creation code isn’t executed.

Taking the Step from VBA Macros to Autodesk
®
 Inventor

®
 Add-Ins

17

You can change one of the registry values of your Add-In to indicate it has a new user-interface and that

Inventor needs to treat the next time it starts as its “first time”. Here’s a section of the Add-In registration

that was discussed earlier. Edit the value of the “Version” value. It doesn’t matter what the value is as

long as it’s different than the previous value.

 'subKey.SetValue("Hidden", "0")

 'subKey.SetValue("UserUnloadable", "1")

 subKey.SetValue("Version", 1)

 subKey.Close()

Now, if you run Inventor again you should see a new toolbar with a single button

representing the new command. If you click the button, nothing happens. This is

because you’re not listening for and responding to the button’s OnExecute event. To

handle this event you need to set up an event handler. In the code window select the

name of the object from the left-hand pull-down (m_featureCountButtonDef in this example) and then

select the event you want to handle from the right-hand pull-down (OnExecute), as shown below.

The OnExecute event handler code is inserted into your project. The code below illustrates the code you

write to call the FeatureCount sub whenever the button is clicked. The Inventor Application object is

passed as the single argument.

Private Sub m_featureCountButtonDef_OnExecute(...)

 FeatureCount(m_inventorApplication)

End Sub

Creating Icons for your Commands

It’s also good to have an icon in addition to the command name to minimize the size of the button and

make the look of your command consistent with the rest of the Inventor commands. Here are the steps

for creating and using icons for your buttons. Visual Basic 2008 Express does not provide a built-in tool

to create icons but you can use any graphics editor you want to create a .bmp or .ico file. There is a

document delivered as part of the SDK that discusses the guidelines you should follow when creating

icons. The file is: SDK\Docs\Guidelines\ Design Guidelines (Icons).doc

For Inventor’s classic user-interface, there are two standard sizes for

icons, 16x16 and 24x24. The end-user can choose from the Toolbars tab

of the Customize dialog whether they want large icons or not, as shown to

the right. You can choose to only supply a small icon and Inventor will

scale it to create a large one when needed, but the result is not as good as

when you create the large icon yourself.

Icon design is somewhat of an art and can consume a lot of time to create something that looks good and

represents the command. I’ve had my best luck designing icons by finding an existing icon, from Inventor

or another application, which has elements similar to the command I’m creating and modifying it. I copy

the icon by doing a screen capture and edit it to get the desired result.

Taking the Step from VBA Macros to Autodesk
®
 Inventor

®
 Add-Ins

18

For this example I used the Windows Paint program to create a 16x16

icon and saved it as a .bmp file. A .bmp file can be imported into a

VB.Net project as a resource. To do this open the Properties page for

your project by running the Properties command, (the last command

in the Project menu). On the Properties page select the Resources

tab on the left and then choose the type of resource from the pull-

down. The picture to the right illustrates selecting the “Images” type.

If you created an icon (.ico file) then you would choose “Icons”.

Next, you can add the resource using the “Add Resource” pull-down

and selecting the “Add Existing File…” option. Browse to and select

your existing .bmp or .ico file to add it to the project. Next, assign a

logical name to the resource. You can see below that I’ve named my image “Smiley”.

Finally, you can associate the image with the button definition you created in the Activate method of your

Add-In. VB.Net uses a different type of object to represent bitmap data than VBA or VB6 did. Inventor’s

API expects the same type that VBA and VB6 uses, which is an IPictureDisp object. VB.Net uses the

Image type, which is not compatible. When you access the picture as a resource it will be returned as an

Image object. You’ll need to convert it to an IPictureDisp object before using it as input to the

AddButtonDefinition method. To do this you’ll need to add references to two additional libraries. These

are stdole and Microsoft.VisualBasic.Compatibility. These are both available on the .Net tab of the Add

Reference dialog.

With these references available you have access to the types and functions you need. The code below

demonstrates this. Notice how the bitmap in the resources is accessed using its name

(My.Resources.Smiley).

' Convert the Image to a Picture.

Dim picture As stdole.IPictureDisp

picture = Microsoft.VisualBasic.Compatibility.VB6.ImageToIPictureDisp(_

 My.Resources.Smiley)

m_featureCountButtonDef = controlDefs.AddButtonDefinition(_

 "Count Features", _

 "AUAddInCountFeatures", _

 CommandTypesEnum.kQueryOnlyCmdType, _

 m_ClientID, _

 "Count the features in the active part.", _

 "Count Features", _

 picture)

Taking the Step from VBA Macros to Autodesk
®
 Inventor

®
 Add-Ins

19

Now the command shows up with an icon like that shown below. Text is displayed with the icon

depending on the end-user setting they set using the context menu of the panel bar.

Creating Buttons within the Panel Bar

Creating a new toolbar and adding your commands to it, as shown above, is probably the easiest way to

make your commands available but is not necessarily the most desirable. In many cases it’s better to

integrate your button in with Inventor’s buttons. For example, if you write a command that is useful when

working with assemblies it will be good to have it appear on the assembly panel bar with the rest of the

assembly commands.

It’s possible to position your commands anywhere within Inventor’s user-interface; both in the classic and

ribbon interfaces. The key to this in the classic interface is the CommandBar object. In inventor’s user-

interface, the panel bar, toolbars, menus, and context menu are all represented by CommandBar objects.

To insert your button you need to find the existing command bar you want your button placed on.

One of the most common places to insert a button is the panel bar. The panel bar is just a container for a

command bar so to display your command in the panel bar you need to find the correct command bar and

insert your button into it. There is a default command bar defined for each environment. Here are the

names of the more commonly used command bars, along with the internal name. The internal name is

how you identify it in your program.

Assembly Panel, AMxAssemblyPanelCmdBar

Assembly Sketch, AMxAssemblySketchCmdBar

Drawing Views Panel, DLxDrawingViewsPanelCmdBar

Drawing Sketch Panel, DLxDrawingSketchCmdBar

Drawing Annotation Panel, DLxDrawingAnnotationPanelCmdBar

Sheet Metal Features, MBxSheetMetalFeatureCmdBar

Part Features, PMxPartFeatureCmdBar

3D Sketch, SCxSketch3dCmdBar

2D Sketch Panel, PMxPartSketchCmdBar

Here’s a portion of code from the Activate method that demonstrates inserting a button into the part

feature panel bar. This can replace the previous code that created the toolbar. Remember to change the

version value in the registration portion of your Add-In so that Inventor will treat this as the first time your

Add-In has been run.

If firstTime Then

 ' Get the part features command bar.

 Dim partCommandBar As Inventor.CommandBar

 partCommandBar = m_inventorApplication.UserInterfaceManager.CommandBars.Item(_

 "PMxPartFeatureCmdBar")

 ' Add a button to the command bar, defaulting to the end position.

 partCommandBar.Controls.AddButton(m_featureCountButtonDef)

End If

Taking the Step from VBA Macros to Autodesk
®
 Inventor

®
 Add-Ins

20

This results in the part panel bar shown here or if you’re using the ribbon interface you’ll get a new panel

in the Add-Ins tab when you have a part open, as shown below, on the right.

Cleaning up after your Add-In
When your Add-In is unloaded you should clean up and release references to Inventor objects you’re still

holding. This is an area that can get very confusing because of how .Net works. Rather than get into that

discussion, here’s a process that works. You only need to do this for global variables you’ve declared

since other variables are automatically release when they go out of scope.

The Deactivate method of your Add-In exists for this purpose. Inventor calls the Deactivate method of

your Add-In whenever it is being unloaded, which can happen when Inventor shuts down or the user

unloads your Add-In using the Add-In Manager. The Add-In wizard created the code below for the

Deactivate method. You can follow this pattern for other releasing other objects.

Public Sub Deactivate()

 ' Release objects.

 Marshal.ReleaseComObject(m_inventorApplication)

 m_inventorApplication = Nothing

 System.GC.WaitForPendingFinalizers()

 System.GC.Collect()

End Sub

Here’s a modified version of the Deactivate after adding code to release the button.

Public Sub Deactivate()

 ' Release objects.

 Marshal.ReleaseComObject(m_inventorApplication)

 m_inventorApplication = Nothing

 Marshal.ReleaseComObject(m_featureCountButtonDef)

 m_featureCountButtonDef = Nothing

 System.GC.WaitForPendingFinalizers()

 System.GC.Collect()

End Sub

How do you debug an Add-In?
Debugging a COM component is an interesting problem. A COM component doesn’t execute and run on

its own but only when loaded and called by another program. In the case of an Add-In, the program

loading and calling it is Inventor. To debug an Add-In you need Inventor to load it and make the

necessary calls while you’re able to monitor all of this in the debugging environment. Visual Studio

supports this type of debugging but unfortunately this is a feature that’s missing from the express edition

of Visual Basic. However, we can work around this limitation by manually adding a few lines to one of the

project files. If you’re using Visual Studio, debugging is directly supported without this workaround.

Debugging for both programming environments is described below.

Taking the Step from VBA Macros to Autodesk
®
 Inventor

®
 Add-Ins

21

Setting Up Visual Basic Express Debugging

For my sample project, VB.Net created the file AUAddIn.vbproj.user to save some project settings. I

added the two lines highlighted below.

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
 <PropertyGroup>
 <PublishUrlHistory>
 </PublishUrlHistory>
 <InstallUrlHistory>
 </InstallUrlHistory>
 <SupportUrlHistory>
 </SupportUrlHistory>
 <UpdateUrlHistory>
 </UpdateUrlHistory>
 <BootstrapperUrlHistory>
 </BootstrapperUrlHistory>
 <ErrorReportUrlHistory>
 </ErrorReportUrlHistory>
 <FallbackCulture>en-US</FallbackCulture>
 <VerifyUploadedFiles>true</VerifyUploadedFiles>
 <StartAction>Program</StartAction>
 <StartProgram>C:\Program Files\Autodesk\Inventor 2010\Bin\Inventor.exe</StartProgram>
 </PropertyGroup>
</Project>

The path to Inventor.exe will vary depending on where you installed Inventor and what version of Inventor

you’re using.

Setting Up Visual Studio VB.Net Debugging

Visual Studio provides additional debugging options to support debugging an Add-In. To set up

debugging, open the Properties page for your project by running the Properties command, (the last

command in the Project menu on the debug tab), select the Start external program option and browse

to locate Inventor.exe.

Debugging your Add-In

Once debugging is setup, the process of debugging is the same whether you’re suing Express or Visual

Studio. To start debugging you use the Start Debugging command in the Debug menu. VB.Net will start

Inventor and be in a state that you can debug the Add-In. Any break points you’ve inserted into your

program will stop execution and allow you to step through your program. When a break point is hit you

can examine values, step through code, make changes to code, and continue running.

Taking the Step from VBA Macros to Autodesk
®
 Inventor

®
 Add-Ins

22

How do you deploy an Add-In?
Now that you’ve got a working Add-In, how do you deploy it to other computers for others to use? This is

another area where the Visual Basic Express Edition is missing functionality. The only built-in install

capabilities the Express Editions come with is something called ClickOnce deployment. Unfortunately,

this type of deployment doesn’t have support for COM components, so you can’t use it for an Add-In.

Visual Studio does support the ability to create an installer but it is overly complex. Instead, I’ve found

two other methods that work with both the Express and Visual Studio versions of VB.Net that I would

recommend. These two methods are explained below. The first one described is the easiest method for

you as the programmer, but not the easiest for the consumer of the Add-In. The second one takes a little

more work on your side but provides much more power and flexibility and is the easiest for the Add-In

user to use.

Method 1

The first and easiest way to deliver an Add-In is to copy the add-in to the target computer and register it.

To copy the Add-In, copy the Add-In dll to the computer you want to run the add-In on using any means

you’re comfortable with, (email attachment, network drives, thumb drives, etc.). In my example, this

would mean copying the AUAddin.dll to any location on the target computer.

To register the Add-In you need to run the regasm utility. Here’s an example of its use. (The /codebase

option is required in order to correctly register the Add-In.)

RegAsm.exe /codebase AUAddIn.dll

RegAsm.exe for Windows 32 bit is installed by the .Net Framework in the directory:

 C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727

For 64 bit Windows it is installed in:

 C:\WINDOWS\Microsoft.NET\Framework64\v2.0.50727

You can also use RegAsm to unregister your Add-In. To make the register/unregister process easier you

can create four small .bat files; 32 bit install, 64 bit install, 32 bit uninstall, and 64 uninstall. Here are the

contents of the .bat files used to register the example Add-In. You’ll need to change the name to match

your Add-In.

Register32.bat

@echo off
C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\RegAsm.exe /codebase AUAddIn.dll
PAUSE

Register64.bat

@echo off
C:\WINDOWS\Microsoft.NET\Framework64\v2.0.50727\RegAsm.exe /codebase AUAddIn.dll
PAUSE

Here are the contents of the two files to unregister the Add-In.

Unregister32.bat

@echo off
C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\RegAsm.exe /unregister AUAddIn.dll
PAUSE

Taking the Step from VBA Macros to Autodesk
®
 Inventor

®
 Add-Ins

23

Unregister64.bat

@echo off
C:\WINDOWS\Microsoft.NET\Framework64\v2.0.50727\RegAsm.exe /unregister AUAddIn.dll
PAUSE

Method 2

The second method relies on some third-party installation software. Even though Visual Studio allows

you to create installers, the process is overly complex when all you actually need the installer to do is

copy the file onto the system and run regasm. I also have yet to figure out how to use the Visual Studio

installer to create a single installer that will correctly install an add-in for 32 or 64 bit Inventor. I’ve also

tried another commercial installer, InstallShield Express, and had problems with it too. I’ve recently

discovered a free installer that I’ve been using and have been very happy with it. It’s called Inno Setup

and is freely available on the web at: http://www.jrsoftware.org/isinfo.php. Below are the step-by-step

instructions to creating a setup using Inno Setup.

1. Download the QuickStart pack. When you go to the Inno Setup site, you’ll see there are several

download options. You should download the Unicode version of the QuickStart pack and take the

default options for what to install. The QuickStart pack includes Inno Setup plus some additional

utilities to make using it easier.

2. Run ISTool. This is one of the utilities delivered as part of the QuickStart pack and provides a

user-interface to Inno Setup. You should see something similar to that shown below.

3. Run the New command, which will display the Inno Setup Script Wizard.

http://www.jrsoftware.org/isinfo.php

Taking the Step from VBA Macros to Autodesk
®
 Inventor

®
 Add-Ins

24

4. Enter the information on the first page of the wizard. The picture below shows my entries for this

sample Add-In.

5. Take the default values for the Application Folder page of the wizard.

6. For the Application Files page, check the box for “The application doesn’t have a main

executable file” and click the Add files(s)… button to browse and find the Add-In dll, as shown

below.

7. Take the default settings for the Application Icons page of the wizard.

8. Take the default settings for the Application Documenation page of the wizard.

9. On the Setup Languages page, choose any languages you want to support. The languages

chosen will only affect the installer, not your Add-In.

Taking the Step from VBA Macros to Autodesk
®
 Inventor

®
 Add-Ins

25

10. On the Compiler Settings page, change the “Compiler output base file name:” to include the
name of your Add-In.

11. Take the default settings for the Inno Setup Preprocessor page of the wizard.

12. Click Finish which will finish the wizard and take you back to the ISTool interface. The setup

project you’re creating is defined in a script file. The wizard and ISTool provide a user-interface

for editing the script. You can compile the setup now and it will create a setup file that will copy

the Add-In dll to the target machine, however the Add-In won’t work because you haven’t

configured your setup to perform the registration required by your Add-In. You still need to add

some instructions to the setup for it to do the registration.

Taking the Step from VBA Macros to Autodesk
®
 Inventor

®
 Add-Ins

26

13. In ISTool, click the Install Run section in the Sections list and then right-click anywhere in the

right-hand area of ISTool and choose New Item… from the context menu, which will display the

dialog below. Edit the Filename, Parameters, and Working dir fields as shown below. (It’s

curly braces { } around “dotnet20” and “app”). Also, check the Run Hidden flag in the Flags

section. Click OK to save the changes and dismiss the dialog.

The changes you made will cause RegAsm to be run for your Add-In during the installation

process. The {dotnet20} parameter will use either the 32 or 64 bit version of RegAsm depending

on what version of Windows the installer is running on. This allows this single installer to register

correctly for both 32 and 64 bit systems.

14. The installer also needs to remove the registry entries when the Add-In is uninstalled. To do this,

click the Uninstall Run section and create a new item, like you did in the last step. Enter

everything the same as you did in the previous step except replace /codebase with /unregister, as

shown below.

Taking the Step from VBA Macros to Autodesk
®
 Inventor

®
 Add-Ins

27

15. One more setting needs to be made in order for your add-in to be correctly installed for both 32

and 64 bit operating systems. Run the Options command, as shown below.

This will display the Setup Options dialog. On the Compiler tab, edit the “Install In 64-bit Mode”

option to be “x64” as shown below.

16. Run the Compile Setup command to create the setup file. You can choose to test it immediately

after compiling if you want. This creates a standard setup that makes distributing your Add-In

better than the .bat file approach because it’s simple for the end-user to install and can be

uninstalled using Windows control panel.

